On complete space-like surfaces with constant mean curvature in a Lorentzian 3-space form
نویسندگان
چکیده
منابع مشابه
The Moduli Space of Complete Embedded Constant Mean Curvature Surfaces
We examine the space of surfaces in R which are complete, properly embedded and have nonzero constant mean curvature. These surfaces are noncompact provided we exclude the case of the round sphere. We prove that the space Mk of all such surfaces with k ends (where surfaces are identified if they differ by an isometry of R) is locally a real analytic variety. When the linearization of the quasil...
متن کاملHYPERSURFACES WITH CONSTANT k-TH MEAN CURVATURE IN A LORENTZIAN SPACE FORM
In this paper, we study n(n ≥ 3)-dimensional complete connected and oriented space-like hypersurfaces Mn in an (n+1)-dimensional Lorentzian space form Mn+1 1 (c) with non-zero constant k-th (k < n) mean curvature and two distinct principal curvatures λ and μ. We give some characterizations of Riemannian product H(c1) ×Mn−m(c2) and show that the Riemannian product Hm(c1)×Mn−m(c2) is the only com...
متن کاملConstant Mean Curvature Surfaces with Two Ends in Hyperbolic Space
We investigate the close relationship between minimal surfaces in Euclidean 3-space and constant mean curvature 1 surfaces in hyperbolic 3-space. Just as in the case of minimal surfaces in Euclidean 3-space, the only complete connected embedded constant mean curvature 1 surfaces with two ends in hyperbolic space are well-understood surfaces of revolution – the catenoid cousins. In contrast to t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tsukuba Journal of Mathematics
سال: 1991
ISSN: 0387-4982
DOI: 10.21099/tkbjm/1496161586